Skip to main content

Indie game storeFree gamesFun gamesHorror games
Game developmentAssetsComics
SalesBundles
Jobs
TagsGame Engines

Changed the video to a mp4 and it started working but now I get this: 

['E:/testfps/Take_30fps.mp4']

FPS: 30000/1001

FPS Eval: 29.97002997002997

G:/60fps/Take_30fps

Using Benchmark: True

Batch Size: -1

Input FPS: 29.97002997002997

Use all GPUS: False

Scale: 1.0

Render Mode: 0

Interpolations: 2X

Use Smooth: 0

Use Alpha: 0

Use YUV: 0

Encode: libx264

Using Half-Precision: True

Loading Data

Using Model: 3_1

Selected auto batch size, testing a good batch size.

Resolution: 7680x3840

Setting new batch size to 1

Resolution: 7680x3840

RunTime: 95.317333

Total Frames: 2857

  0%|                             | 4/2857 [00:02<26:36,  1.79it/s, file=File 2]Exception ignored in thread started by: <function queue_model at 0x000002302F3E9940>

Traceback (most recent call last):

  File "my_DAIN_class.py", line 407, in queue_model

  File "my_DAIN_class.py", line 135, in make_inference

  File "model\RIFE_HDv3.py", line 391, in inference

  File "model\RIFE_HDv3.py", line 298, in predict

  File "torch\nn\modules\module.py", line 1051, in _call_impl

    return forward_call(*input, **kwargs)

RuntimeError: The following operation failed in the TorchScript interpreter.

Traceback of TorchScript, serialized code (most recent call last):

  File "code/__torch__/model/RIFE_HDv3.py", line 20, in forward

    flow0 = torch.mul(_1, 0.5)

    f1 = __torch__.model.warplayer.warp(x1, flow0, )

    x2 = (self.conv2).forward(x1, )

          ~~~~~~~~~~~~~~~~~~~ <--- HERE

    _2 = _0(flow0, None, 0.5, "bilinear", False, True, )

    flow1 = torch.mul(_2, 0.5)

  File "code/__torch__/model/RIFE_HDv3/___torch_mangle_27.py", line 11, in forward

    x: Tensor) -> Tensor:

    x0 = (self.conv1).forward(x, )

    return (self.conv2).forward(x0, )

            ~~~~~~~~~~~~~~~~~~~ <--- HERE

  File "code/__torch__/torch/nn/modules/container/___torch_mangle_26.py", line 12, in forward

    _0 = getattr(self, "0")

    _1 = getattr(self, "1")

    input0 = (_0).forward(input, )

              ~~~~~~~~~~~ <--- HERE

    return (_1).forward(input0, )

  def __len__(self: __torch__.torch.nn.modules.container.___torch_mangle_26.Sequential) -> int:

  File "code/__torch__/torch/nn/modules/conv/___torch_mangle_25.py", line 21, in forward

  def forward(self: __torch__.torch.nn.modules.conv.___torch_mangle_25.Conv2d,

    input: Tensor) -> Tensor:

    _0 = (self)._conv_forward(input, self.weight, self.bias, )

          ~~~~~~~~~~~~~~~~~~~ <--- HERE

    return _0

  def _conv_forward(self: __torch__.torch.nn.modules.conv.___torch_mangle_25.Conv2d,

  File "code/__torch__/torch/nn/modules/conv/___torch_mangle_25.py", line 27, in _conv_forward

    weight: Tensor,

    bias: Optional[Tensor]) -> Tensor:

    _1 = torch.conv2d(input, weight, bias, [1, 1], [1, 1], [1, 1])

         ~~~~~~~~~~~~ <--- HERE

    return _1

Traceback of TorchScript, original code (most recent call last):

  File "C:\Users\Gabriel\Downloads\torch19\lib\site-packages\torch\nn\modules\container.py", line 139, in forward

    def forward(self, input):

        for module in self:

            input = module(input)

                    ~~~~~~ <--- HERE

        return input

  File "C:\Users\Gabriel\Downloads\torch19\lib\site-packages\torch\nn\modules\conv.py", line 443, in forward

    def forward(self, input: Tensor) -> Tensor:

        return self._conv_forward(input, self.weight, self.bias)

               ~~~~~~~~~~~~~~~~~~ <--- HERE

  File "C:\Users\Gabriel\Downloads\torch19\lib\site-packages\torch\nn\modules\conv.py", line 439, in _conv_forward

                            weight, bias, self.stride,

                            _pair(0), self.dilation, self.groups)

        return F.conv2d(input, weight, bias, self.stride,

               ~~~~~~~~ <--- HERE

                        self.padding, self.dilation, self.groups)

RuntimeError: CUDA out of memory. Tried to allocate 7.91 GiB (GPU 0; 24.00 GiB total capacity; 2.66 GiB already allocated; 18.15 GiB free; 3.82 GiB reserved in total by PyTorch)