I think create of this one idk
$$ \begin{align*}f(x) & =\frac{-b\pm\sqrt{b^2-4ac}}{2a}\cdot\sum_{n=1}^{\infty}\frac{1}{n^2}\\ & =\int_0^{\infty}e^{-x^2}dx\cdot\prod_{k=1}^{n}\frac{\Gamma(k)}{\sqrt{2\pi}}\\ & =\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)\phi(x,y)=\nabla^2\phi=\frac{4\pi G\rho}{c^2}\\ & =\oint_{\partial\Omega}\mathbf{F}\cdot d\mathbf{r}=\iint_{\Omega}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy\\ & =\lim_{n\to\infty}\sum_{k=1}^{n}\binom{n}{k}x^{k}(1-x)^{n-k}=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\\ & =\det\begin{pmatrix}a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{pmatrix}\cdot\oint_{C}\frac{f(z)}{z-z_0}dz=2\pi if(z_0)\\ & =\frac{d}{dx}\int_{a(x)}^{b(x)}f(x,t)dt=\int_{a(x)}^{b(x)}\frac{\partial f}{\partial x}dt+f(x,b(x))\frac{d}{dx}b(x)-f(x,a(x))\frac{d}{dx}a(x)\end{align*} $$